Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Small ; : e2205281, 2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2173456

ABSTRACT

The development of simple, cost-effective, rapid, and quantitative diagnostic tools remains critical to monitor infectious COVID-19 disease. Although numerous diagnostic platforms, including rapid antigen tests, are developed and used, they suffer from limited accuracy, especially when tested with asymptomatic patients. Here, a unique approach to fabricate a nanochannel-based electrochemical biosensor that can detect the entire virion instead of virus fragments, is demonstrated. The sensing platform has uniform nanoscale channels created by the convective assembly of polystyrene (PS) beads on gold electrodes. The PS beads are then functionalized with bioreceptors while the gold surface is endowed with anti-fouling properties. When added to the biosensor, SARS-CoV-2 virus particles block the nanochannels by specific binding to the bioreceptors. The nanochannel blockage hinders the diffusion of a redox probe; and thus, allows quantification of the viral load by measuring the changes in the oxidation current before and after virus incubation. The biosensor shows a low limit of detection of ≈1.0 viral particle mL-1 with a wide detection range up to 108 particles mL-1 in cell culture media. Moreover, the biosensor is able to differentiate saliva samples with SARS-CoV-2 from those without, demonstrating the potential of this technology for translation into a point-of-care biosensor product.

2.
J Nanobiotechnology ; 19(1): 348, 2021 Oct 30.
Article in English | MEDLINE | ID: covidwho-1555350

ABSTRACT

Viral infections are the most common among diseases that globally require around 60 percent of medical care. However, in the heat of the pandemic, there was a lack of medical equipment and inpatient facilities to provide all patients with viral infections. The detection of viral infections is possible in three general ways such as (i) direct virus detection, which is performed immediately 1-3 days after the infection, (ii) determination of antibodies against some virus proteins mainly observed during/after virus incubation period, (iii) detection of virus-induced disease when specific tissue changes in the organism. This review surveys some global pandemics from 1889 to 2020, virus types, which induced these pandemics, and symptoms of some viral diseases. Non-analytical methods such as radiology and microscopy also are overviewed. This review overlooks molecular analysis methods such as nucleic acid amplification, antibody-antigen complex determination, CRISPR-Cas system-based viral genome determination methods. Methods widely used in the certificated diagnostic laboratory for SARS-CoV-2, Influenza A, B, C, HIV, and other viruses during a viral pandemic are outlined. A comprehensive overview of molecular analytical methods has shown that the assay's sensitivity, accuracy, and suitability for virus detection depends on the choice of the number of regions in the viral open reading frame (ORF) genome sequence and the validity of the selected analytical method.


Subject(s)
Clinical Laboratory Techniques , Virus Diseases/diagnosis , Viruses/isolation & purification , Biosensing Techniques , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Nucleic Acid Amplification Techniques , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Viral Proteins/genetics , Viral Proteins/immunology , Virus Diseases/epidemiology , Viruses/classification , Viruses/genetics , Viruses/immunology
3.
J Electroanal Chem (Lausanne) ; 893: 115289, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1201492

ABSTRACT

The SARS-CoV-2 virus is still causing a dramatic loss of human lives worldwide, constituting an unprecedented challenge for the society, public health and economy, to overcome. The up-to-date diagnostic tests, PCR, antibody ELISA and Rapid Antigen, require special equipment, hours of analysis and special staff. For this reason, many research groups have focused recently on the design and development of electrochemical biosensors for the SARS-CoV-2 detection, indicating that they can play a significant role in controlling COVID disease. In this review we thoroughly discuss the transducer electrode nanomaterials investigated in order to improve the sensitivity, specificity and response time of the as-developed SARS-CoV-2 electrochemical biosensors. Particularly, we mainly focus on the results appeard on Au-based and carbon or graphene-based electrodes, which are the main material groups recently investigated worldwidely. Additionally, the adopted electrochemical detection techniques are also discussed, highlighting their pros and cos. The nanomaterial-based electrochemical biosensors could enable a fast, accurate and without special cost, virus detection. However, further research is required in terms of new nanomaterials and synthesis strategies in order the SARS-CoV-2 electrochemical biosensors to be commercialized.

SELECTION OF CITATIONS
SEARCH DETAIL